
ELEC50015 Electronics Design Project 2

Imperial College London

Department of Electrical & Electronic Engineering 2024

Enginbeers Team: Balance Bot

Authors:
Alexander Charlton, Quentin Duff, Pavalarahul Ganeshsankar, Hector Oga,

Dylan Toussaint, Rishabh Varia

Examiner: Dr. Edward Stott

Word Count: 9981

Group GitHub Repository

August 31, 2024

https://github.com/qduff/ee2project

Abstract
This project aims to create an autonomous maze solving robot. Given a square maze with partitions, the
robot can map the maze and provide a solution to the user.

The project follows the basic requirements set out in the project brief in addition to its main aim. Namely,
it is self-balancing on two wheels, monitors its power consumption and battery level, features an interactive
user interface and features a constructed head-unit.

The different subsystems were first characterized through a thorough set of requirements, and assigned
to team members on the basis of our relative strengths and weaknesses. Once a basic system was setup,
incremental iterations slowly added new features until the requirements were met.

This report will detail the design and implementation of the different units that were integrated and how they
fit together. custom voltage and current sensing circuits, along with a motor controller to power the motors
and some ultrasonic sensors for spatial awareness interfaced with an esp32 running zephyr to coordinate the
core of the robot. commands where sent via a two way Art protocol to a raspberry pi, in charge of higher
level functions and control of the rover, including acting as a server for a client designed to allow an end user
to interface with the entire system.

Each unit and the robot was first tested individually, and then tested together as the systems became more
interlinked. The robot achieves accurate position, velocity and angle control and can navigate and solve a
maze, traversing it algorithmically until it reaches its target position in the maze. Additionally, users may
switch to manual control.

1

Contents
1 Introduction 6

1.1 Problem Identification . 6
1.2 Purpose . 6
1.3 Role Distribution . 6

2 Maze Solving 8
2.1 Maze Solving Theory & Possible Algorithms . 8

2.1.1 1st Algorithm: Depth-First Search . 8
2.1.2 2nd Algorithm: Breadth-First Search . 8
2.1.3 4th Algorithm: Flood Fill . 8

2.2 Coding Implementation . 9
2.2.1 Prioritising Shortest L-Shaped Path . 10

2.3 Backtracking . 10
2.3.1 Data Structures . 10

2.4 Physical Implementation . 10

3 Control 13
3.1 Physical Modelling . 14
3.2 Translational Equations of Motion . 14

3.2.1 Angle Dynamics . 14
3.2.2 Velocity Dynamics . 15
3.2.3 Position Dynamics . 15

3.3 Translational Motion Controller Designs: Loop Shaping . 16
3.3.1 Angle Controller . 16
3.3.2 Velocity Controller . 18
3.3.3 Position Controller . 18

3.4 Yaw Equations of Motion . 19
3.5 Yaw Controller Design . 19

3.5.1 1st Iteration: Modifying the motor controller via acceleration 19
3.5.2 2nd Iteration: Modifying the stepper drivers . 19

3.6 Experimental Controller Design . 20
3.6.1 1st Iteration: Changing Motor Target Angular Velocity 20
3.6.2 2nd Iteration: Changing Motor Angular Acceleration 20

3.7 Controller Performance: Simulations VS Experiment . 20
3.7.1 Angle Controller . 20
3.7.2 Velocity Controller . 22
3.7.3 Position Controller . 24
3.7.4 Yaw Controller . 26

3.8 Conclusion . 27

4 Sensing and Monitoring 28
4.1 Power Monitoring . 28

4.1.1 Hardware Interface . 29
4.1.2 Software Interface . 31
4.1.3 Conclusion . 33

4.2 Sensing . 34
4.2.1 Sensor Choice . 34
4.2.2 Physical Implementation of Sensing . 34
4.2.3 Maze Error Handling via Sensing . 35
4.2.4 Inertial Measurement . 35

5 Software 38
5.1 Overview . 38

2

5.1.1 Overall implementation . 39
5.2 Firmware . 41

5.2.1 Robot Movement . 42
5.2.2 Stepper Driver . 42
5.2.3 Ultrasonic Sensor Implementation . 42
5.2.4 Non-Volatile storage . 42
5.2.5 Communication with the Raspberry Pi (Server) . 42
5.2.6 Evaluation . 43

5.3 Server . 45
5.3.1 Overview . 45
5.3.2 Implementation . 46

5.4 Client . 47
5.4.1 Overview . 47
5.4.2 Implementation . 47
5.4.3 Architecture overview . 48
5.4.4 UI . 48

6 Conclusion 50

A Appendix 51
A.1 Figures . 51
A.2 Bill of Materials . 56
A.3 FMEA Analysis . 57
A.4 Risk Assessment . 59

3

List of Figures
1.3.1 Dependency Diagram . 7
2.1.1 DFS: Intersection 1 noted . 8
2.1.2 DFS: Dead end taken, steps traced back . 8
2.1.3 DFS: Exploring other unseen branches . 8
2.1.4 BFS: Intersection 1a Noted . 9
2.1.5 BFS: Going to Intersection 1b, Noted . 9
2.1.6 BFS: Exploring Unexplored Path Past Intersection 1a. 9
2.1.7 comparison of algorithms [1] . 9
2.2.1 Weight to neighbor code . 10
2.4.1 Maze 1 . 11
2.4.2 Maze 2 . 11
2.4.3 Maze 3 . 11
2.4.4 Maze 4 . 11
2.4.5 Maze 5 . 11
2.4.6 T-Junction Module . 11
2.4.7 Corner Piece . 11
2.4.8 Side Stand . 11
2.4.9 Modularising the Mazes . 11
2.4.10 Modular Assembly of Maze 1 . 11
3.2.1 Model Showing Forces Applied to the System . 16
3.2.2 Full Control Scheme . 16
3.3.1 Basic Block Diagram of the Angular Control . 18
3.7.1 Angle Test Angle Loop Time Response . 21
3.7.2 Angle Test Simulated Angle Loop Time Response . 21
3.7.3 Velocity Test Velocity Time Response . 22
3.7.4 Velocity Test Angle Time Response . 22
3.7.5 Velocity Test Velocity Simulated Results . 23
3.7.6 Position Test Position Time Response . 24
3.7.7 Position Test Velocity Time Response . 24
3.7.8 Position Test Angle Time Response . 24
3.7.9 Position Test Simulated Position Response . 25
3.7.10 Position Test Simulated Velocity Response . 25
3.7.11 Position Test Simulated Angle Response . 25
3.7.12 Yaw Test Yaw Step Response . 26
3.7.13 Yaw Test Position Response to a Yaw Step . 26
4.1.1 Differential Amplifier with Voltage Reference [2] . 29
4.1.2 Hardware Interface Schematic . 30
4.1.3 Hardware Interface Construction . 30
4.1.4 ADC Characterization (PlatformIO) . 31
4.1.5 ADC Characterization (ZephyrOS) . 31
4.1.6 Calibration Curve for ADC . 32
4.1.7 Battery Discharge Curve [3] . 32
4.2.1 Ultrasound Sensor Clip . 34
4.2.2 Bot Head Unit Cap . 34
4.2.3 Parts Mounted onto the Bot . 35
4.2.4 Force Diagram . 36
4.2.5 Filtered and Unfiltered Data . 36
5.1.1 Overall architecture . 39
5.1.2 software architecture . 40
5.4.1 UI Interface in maze mode . 48
5.4.2 UI interface in manual mode . 49
A.1 Tilt Natural System Response . 51

4

A.2 Tilt Open Loop System Response . 51
A.3 Tilt Closed Loop System Response . 52
A.4 Velocity Natural System Response . 52
A.5 Velocity Open Loop System Response . 52
A.6 Velocity Closed Loop System Response . 53
A.7 Position Natural System Response . 53
A.8 Position Open Loop System Response . 53
A.9 Position Closed Loop System Response . 54
A.10 HC-SR04 Ultrasound Sensor Board [4] . 54
A.11 Flood Fill Algorithm Iterative Solving Demonstration . 55

List of Tables
1.3.1 Role Distribution According to Strengths . 6
3.1.1 Balance Bot Variables . 14
4.1.1 Differential Amplifier Gain Table . 29
4.1.2 Discharge to Percentage Conversion . 33
5.2.1 Protocol Evaluation . 43
A.2.1 Complete Bill of Materials . 56
A.3.1 FMEA Process Identification and Classification . 57
A.3.2 FMEA Recommend Actions and Action Taken . 58

List of Listings
4.1.1 ADC Correction Polynomial . 32
4.1.2 ADC Readings, Full Interface . 33
A.1.1 Additional Parameters and Functions Needed to Implement Yaw 51

5

1 Introduction

1.1 Problem Identification
The robot is a two-wheeled inverted rigid body pendulum that can move in a three dimensional plane.
Tuning the controllers will be done through loop shaping and simulations, implying the robot will need to
be modelled. Considerations will also be made when implementing the controllers in practice into hardware,
as results may shift from the simulations. We must also find a way to communicate between the ESP32
module, the Raspberry Pi, and the client’s computer, allowing for display of useful information to the user.
This information includes, but is not limited to, battery percentage, power usage, PID coefficient tuning and
updating, and mode of operation.

1.2 Purpose
The robot will have multiple modes of operation: the user can choose between maze and manual mode. In
manual mode, the robot behaves like a regular remote controlled vehicle, guided by inputs from the user.
The user will be able to modify the robot’s controllers on the fly, all while giving it commands. Maze mode
is an autonomous mode where the robot is expected to solve a maze it is placed in and has not previously
seen. Upon startup, it will be told where it is in the maze and where it is expected to go. With no input
from the user, the robot will figure out exactly how to solve the maze, all while updating its built-in map
on the UI for the user to see.

1.3 Role Distribution
Roles were distributed according to each team member’s respective strengths in a field, leading us to having
a defined set of roles that was kept throughout the robot’s conception. Cooperation and peer review was
encouraged between roles.

Dylan Power Management Component, Hardware Implementation and Testing, ADC, FMEA
Hector Control Component, Control Model Characterization, PID Implementation and Tuning, Maze

Solving Theory
Rishabh Control Component, PID Testing and Tuning, CAD, Maze Designing and Building
Rahul PI Comms and MPU Unit, MPU6050 Library Implementation, Maze Algorithm Implemen-

tation
Alexander PI Comms, User Interface, Client, UART, ADC Firmware Implementation
Quentin ESP32 Firmware and Server, Stepper Motor Driver, Client, PC-PI-ESP32 Communication

Bridge, PID Implementation

Table 1.3.1: Role Distribution According to Strengths

From the role allocation and the dependency tree. In this project the roles have been assigned to optimise
the strengths of each of the team’s members. Considering that the group consists of 3 EEE and EIE people.
The EIE people have been tasked with implementing the zephyr OS firmware and server while those in EEE
have been assigned the battery management, control and CAD. This division allowed each member of the
EEE and EIE partition to proof check over each others work. Such that section was solely worked on by one
person, and so that at least 2 people knew the state of a given module at a time. This provided redundancy
in case a group member fell ill as well as helping keeping track of the progress of the project. We also made
extensive use of GitHub, which each commit having a descriptive description such that the programming
team could keep track of what was being worked on and what still needed doing.

A risk assessment was performed prior to any work. This can be found in Appendix A.4.

6

Figure 1.3.1: Dependency Diagram
7

2 Maze Solving

2.1 Maze Solving Theory & Possible Algorithms
Solving a maze at first glance may sound simple, but unlike us, the robot does not have any top-view of
the maze, and can only rely on our choice of ultrasound sensors to map the maze. In the Micromouse
Competition organized by IEEE [5], a small electronic mouse is required to solve a 16x16 maze. We wish
for our robot to accomplish maze solving in similar way: with a minimal number of runs, and in the most
efficient way possible. For our purposes, we have chosen a smaller 5x5 maze, small enough to build but large
enough to demonstrate our robot’s capabilities. There are many algorithms capable of solving a maze while
traversing it, but each offers its own advantages and drawbacks [6].

If the maze has the goal on a corner, and presents no standing walls, it is possible to solve it with no
complicated math and simply following a wall until the end is reached. For this reason, our maze will have
standing walls and a variable goal.

2.1.1 1st Algorithm: Depth-First Search

This algorithm consists of running through the maze noting every fork in the road. Whenever the robot can
no longer advance, it goes back to the last recorded fork in the road and explores the next option. If a fork
led nowhere, the robot must then backtrack to the last intersection it remembers having unexplored options.
This strategy is not guaranteed to find the shortest route, as the mouse only turns back when it needs to,
leading to possible shortcuts missed.

Figure 2.1.1: DFS: Inter-
section 1 noted

Figure 2.1.2: DFS: Dead
end taken, steps traced
back

Figure 2.1.3: DFS: Explor-
ing other unseen branches

2.1.2 2nd Algorithm: Breadth-First Search

This is the sibling algorithm to Depth First-Search. It is guaranteed to find the shortest path, but is
significantly longer. This strategy makes the mouse travel to an intersection, at which, instead of exploring
it, checks the path it skipped by going to this intersection. When the mouse then reaches the next intersection,
it goes back to the first intersection it found to explore the path it skipped. The process repeats until the
robot finds the goal, where then the robot is capable of smoothing out the actual shortest path it must take
to get to the goal. Unfortunately, the extremely long execution time of this algorithm makes it undesirable,
as it is rerunning paths multiple times (dozens, for larger mazes). Searching the whole maze often takes less
time!

2.1.3 4th Algorithm: Flood Fill

The most popular maze-solving algorithm used in the Micromouse competition is known as Flood Fill [7].
Using this algorithm, the robot’s plan is to make optimistic journeys throughout the maze; so optimistic in
fact, that the robot’s first map of the maze contains no walls at all. The robot simply draws the shortest
path to the goal and tries to go. The robot will inevitably encounter walls and obstacles to its optimistic

8

Figure 2.1.4: BFS: Inter-
section 1a Noted

Figure 2.1.5: BFS: Going
to Intersection 1b, Noted

Figure 2.1.6: BFS: Explor-
ing Unexplored Path Past
Intersection 1a.

journey: it will, at that point, rethink its journey, and updating its optimistic path, accounting for the new
obstacles. It is an iterative process of running and updating its stored maze map, always bee-lining for the
goal. Although it is guaranteed to find a solution in a single run, it is not always the fastest.

Figure 2.1.7: comparison of algorithms [1]

A variation of this algorithm will be used in order to implement backtracking. Whilst it may not be as
computationally efficient as flood fill, it is poised to take advantage of information gained from multiple
blocks away whilst flood fill will blindly follow a preconceived path until it reaches the blockage.

The iterative process for this algorithm has been shown in Figure A.11

2.2 Coding Implementation
In order to implement the flood fill algorithm, there are two broad cases which have to be thought about.

• Being able to follow the shortest L shaped path

• Backtracking in the event of a blockage

9

The A* algorithm that can have a new iteration run every can be used underneath to cover these cases. The
heuristic part and weightings of the A* algorithm can used to prioritize the shortest L path and having a
new iteration every time new information about the maze is discovered will allow backtracking.

2.2.1 Prioritising Shortest L-Shaped Path

The fact that the shortest L-shaped path only requires one turn makes it quicker. This means that the
weights between nodes that are fed into the A* underlying algorithm need to be varied by the amount of
turning required such that turning multiple times is penalised.

fn dn(ne ighbor_di rec t i on : maze : : Di rect ion , robot_fac ing : maze : : D i r e c t i on)
−> cos t f l o a t {

//Sub operator i s implemented f o r maze : : D i r e c t i on and i t
g i v e s the number o f turn
return (ne ighbor_di rec t ion − robot_fac ing) ∗
TURN_COST + ONE_STEP_FORWARD;

}

Figure 2.2.1: Weight to neighbor code

This is achieved by using a vector map that stores the hypothetical orientation of the robot at every node
and compares it to the direction of travel to the neighbor as shown in Snippet:2.2.1.

2.3 Backtracking
Having an A* iteration run once new data about the maze is discovered allows the algorithm to backtrack.

2.3.1 Data Structures

The data-structure that holds the information about the maze will have to hold the following information:

• If each block has been traversed or not.

• If walls exist between nodes.

In order to avoid duplication of data storage which would be in efficient, each edge between neighbors is only
stored once. Each block holds the information regarding to 2 out of its 4 surrounding walls.

2.4 Physical Implementation
The maze is mapped as a grid on a 5× 5 matrix with each square in the matrix which are all 0.25m× 0.25m
each. From this we can design the following mazes. Here the start position of the robot is marked with an
′O′ and the finish position with an ′×′. Here are 5 possible maze designs that the robot could solve. Each
side the robot has to access the centre of the maze with is different between each of these designs, thus this
gives some variety on the mazes the bot solves and provides more rigorous testing.

From this the maze therefore needs to be modular, so that the inside of the maze borders can be for any
amount of variable setups. The designs given are just mere examples and using the following CAD blocks
can be used to achieve this modularisation. There are 3 blocks in total, one being a corner piece, a side
stand and t-junction module.

10

Figure 2.4.1: Maze 1 Figure 2.4.2: Maze 2 Figure 2.4.3: Maze 3

Figure 2.4.4: Maze 4 Figure 2.4.5: Maze 5

Figure 2.4.6: T-
Junction Module

Figure 2.4.7: Corner
Piece

Figure 2.4.8: Side
Stand

Figure 2.4.9: Modularising
the Mazes

Figure 2.4.10: Modular Assembly of
Maze 1

11

These pieces will hold together modular cardboard pieces which are 25cm in width and 25-30cm in height.
The t-junction allows a cardboard piece to be attached to the outside cardboard frame. The corner piece
allows the cardboard pieces to attached at 90o to each other. Finally the side stand then finally allows for a
single free standing piece to be placed. As the cardboard pieces are of variable height, the corner pieces are
open ended on either end. The use of this can be seen in the figure below. These pieces are only 3cm tall
and with a 20% infill 10 of these pieces can be printed in 10 hours meaning that we can have an abundance
of these and have no shortage of maze configurations. Furthermore this shows that this method of maze
modularisation is effective and simple and can provide a breadth of test mazes. To further improve the
modularisation of this maze the quality of the cardboard used can be improved.

12

3 Control
The balancing of the robot is a critical part of the successful completion of our main objectives. The robot
must be able to control its tilt angle, velocity and maintain a known position in order to accurately map a
maze.

Additionally, the robot must also change its yaw without affecting its balance or positioning control.

The following section presents our design and implementation process for the main controller. Control
is achieved by a set of cascaded PID controllers which were tuned using Matlab modelling. Testing was
completed in order to ensure stability and precise positioning.

Control Unit Requirements
Technical Requirements

Angle Control The robot must be able to reach and maintain a
tilt angle between 0 and ±5o, sufficiently fast for
velocity and position control loops to operate effec-
tively. The robot must be able to remain upright
independently of any offset during the calibration
of the gyroscope unit.

Velocity Control The robot must be able to reach and maintain a
velocity between 0 and 0.5 m/s along its longitudi-
nal axis, fast enough for the position controller to
operate effectively.

Position Control The robot must be able to reach and maintain a
position setpoint along its longitudinal axis. The
position controller must have little absolute error
as accurate positioning is crucial to our main ob-
jective.

Yaw Control The robot must be able to rotate along its yaw axis
while stationary. This must not affect the tilt angle
of the robot.

13

3.1 Physical Modelling
We have chosen to model the balance bot as a two-wheeled inverted rigid body pendulum.

Variable Unit Description
M [kg] Mass of the wheels
mbod [kg] Mass of the body
mbatt [kg] Mass of the batteries
m [kg] Mass of the robot (m = mbod +mbatt)
g [m.s-2] Gravitational Constant
l [m] Distance from center of wheel to bot’s center of mass
R [m] Wheel radius
Tb [s] Body natural period of oscillation
Ib [kg.m-2] Body moment of inertia
Iw [kg.m-2] Wheel moment of inertia
Iz [kg.m-2] Yaw moment of inertia
x [m] Horizontal displacement
θ [rad] Pitch angle from the vertical
ψ [rad] Yaw angle about the vertical axis

Table 3.1.1: Balance Bot Variables

3.2 Translational Equations of Motion
3.2.1 Angle Dynamics

To determine analytically the equations of motions, the Lagrangian method of balancing energies was used.
To determine kinetic energy, we consider the rotational energy of the body and the wheels, as well as the
translational energy of the body. The potential energy is comprised of only the body’s as we consider the
wheels to be at height 0.

L = T − V = Tbody,trans + Tbody,rot + Twheels,rot − Vbody (1)

Now to determine each of these values individually. Considering the body’s center of mass, its position in the
xy-plane is (xbod, ybod) = (x+l sin(θ), l cos(θ)), its velocity is therefore (ẋbod, ẏbod) = (ẋ+lθ̇ cos(θ),−lθ̇ sin(θ)).
Hence vbod =

√
ẋ2bod + ẏ2bod, and therefore we can establish Tbody,trans = 1

2mv
2
bod = 1

2m((ẋ + lθ̇ cos(θ))2 +

(lθ̇ sin(θ))2. The rotational kinetic energy of the body depends on its moment of inertia: Tbody,rot = 1
2Ibθ̇

2.
In summary:

Twheels,rot =
1

2
Mẋ2

Tbody,trans =
1

2
m(ẋ2 + θ̇2l2 + 2lẋθ̇ cos(θ))

Tbody,rot =
1

2
Ibθ̇

2

Vbody = mgl cos(θ)

(2)

Using the Euler-Lagrange equations:

d

dt

(
∂L

∂qi

)
− ∂L

∂qi
= Qi i = {1, 2}, qi = {x, θ}, Qi are the generalized forces (3)

Including an input torque τ to the wheels, rearranging gives the system of equations of motion:

14

(M +m)ẍ+ml cos(θ)θ̈ −ml sin(θ)θ̇2 =
τ

R

mlcos(θ)ẍ+ (ml2 + Ib)θ̈ +mgl sin(θ)
(4)

To simplify these equations, small angle approximations can be used for θ ≪ 1: cos θ ≈ 1 and sin θ ≈ θ.
Hence the revised system of equations is:

(M +m)ẍ+mlθ̈ −mlθθ̇2 =
τ

R

mlẍ+ (ml2 + Ib)θ̈ +mglθ = 0
(5)

Define the state variable x =
(
x, ẋ, θ, θ̇

)T
= (x1, x2, x3, x4)

T
=⇒ ẋ =

(
ẋ, ẍ, θ̇, θ̈

)T
=

(
x2, ẍ, x4, θ̈

)T
.

Hence, linearising around the equilibrium point x = 0, τ = 0 gives the state space system below, using y as
our output.

{
ẋ = Ax +Bu

y = Cx
(6)

With: A =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 k2 0

 B =

0
k1
0

−k3

 C = I4

And:

k1 =
1

R
(
M + Iw

R2 +m+ m2l2

ml2+Ib

)
k2 =

mgl

ml2 + Ib

k3 =
mlk1

ml2 + Ib

(7)

3.2.2 Velocity Dynamics

Figure 3.2.1 shows the forces applied to the system, considering it from the center of mass. Considering a
fixed position wheel for now, the weight of the bot P creates a torque upon the wheel axle, thus creating a
rotational force normal to the bot’s trajectory Fτ . This force has a translational horizontal component Ft,
which can be extracted from the diagram to be as per Equation (8) below.

Ft = P tan θ (8)

Hence, using Newton’s second law and small angle approximations, we can establish a relationship between
ground speed of the robot and the pitch angle:

ma = mg tan θ =⇒ a ≈ gθ =⇒ v ≈
∫
gθ (9)

3.2.3 Position Dynamics

Ground position and ground velocity are simply linked by integration:

p =

∫
vdt

15

Figure 3.2.1: Model Showing Forces Applied to the System

From the dynamics, we can obtain the full block diagram for robot’s movement, as shown in Figure 3.2.2,
relating position to velocity, and velocity to tilt angle.

Figure 3.2.2: Full Control Scheme

3.3 Translational Motion Controller Designs: Loop Shaping
3.3.1 Angle Controller

As expected, the transfer function between input torque to the wheels and the angle from the vertical
is unstable: any disturbance from the equilibrium point results in the robot toppling. It is of the form
Equation (10), where one of the poles is positive.

Gθ(s) =
µ

s2 − ω2
n

{µ, ωn} ∈ ℜ (10)

The values of µ and ωn were obtained experimentally. µ was calculate from k1, k2, and k3 previously
calculated, whereas ωn is the natural angular frequency of the robot, modelled as an inverted pendulum. A
video was taken of the robot swinging from side to side, and timestamps revealed that its natural oscillation
period was Tb = 0.836869231s, using multiple swing test iterations, and averaging all results. This was

16

confirmed in the simulations as the value for ω2
n obtained in MATLAB was the same obtained using the free

oscillation method. This confirms the validity of our model, and gives confidence its results will be accurate.

ωn =
2π

Tb
= 7.508rad/s =

√
ω2
n(simulated)

To stabilize this system, we have chosen a PID structure as they offer a practical, versatile, and cost-
effective solution for many control applications, providing robust performance with a simple design and
implementation, easily implemented in the C language, which is the one used for this project. Their balance
of simplicity and effectiveness makes them our preferred choice. The basic structure for a PID controller is:

C(s) = Kp +
Ki

s
+

Kd

1 + τfs
(11)

Hence, the open loop system is:

Lθ(s) = Cθ(s)Gθ(s) =

(
Kp +

Ki

s
+

Kd

1 + τfs

)
µ

s2 − ω2
n

(12)

However, once we factorise out Ki

s and 1
1+τfs

, we are left with a system that would result in an unstable
closed loop system, due to the integrator.

Lθ(s) =
µKi

s(1 + τfs)

(
1 +

Kp +Kiτf
1 + τfs

s+
Kd +Kpτf
1 + τfs

s2
)

1

s2 − ω2
n

(13)

Therefore, to ensure stability, we must set Ki = 0, leaving us with a PD controller. From this, we can rewrite
the loop equation as such:

Cθ(s) = Kp +
Kd

1 + τfs
=⇒ Lθ(s) = µ

(
Kp +

Kd

1 + τfs

)
1

s2 − ω2
n

=⇒ Lθ(s) =
µKp

1 + τfs

(
1 +

Kd +Kpτf
Kp

s+
Kd

Kp
s2
)

1

s2 − ω2
n

(14)

It is more useful to factorize this expression, setting two zeros, a pole, and a variable static gain, all of which
can be tuned. From these values, the PD coefficients can be extracted:

Lθ(s) =
µ̄

1 + τfs
(1 + τ1s)(1 + τ2s)

1

s2 − ω2
n

(15)

Where:

µ̄ = µKp

τ1 + τ2 =
Kd +Kpτf

Kp

τ1τ2 =
Kd

Kp

=⇒

Kp =
µ̄

µ

Kd = (τ1 + τ2 − τf)Kp

We wish to have the desired crossover frequency ωdcbetween these two zeros, so we can set a high and a low
frequency zero by setting τ1 = 10

ωd
c

and τ2 = 1
2ωd

c
. The static gain µ̄ =

4ωd
c

τ1
yields the best results. Using

these three values, we are able to obtain the best simulation results. We set ωdc to 30rad/s, as this is a fast
enough controller to catch the robot in case it falls.

It is more useful to work in angular acceleration applied to the wheel, as that is a parameter easy to control in
the code, given we are using stepper motors with a fixed step angle. Using microstepping, otherwise known as

17

dividing each stepper motor angle into smaller steps, we are able to control the angular acceleration applied
to the wheels with more precision. Hence, we can draw the block diagram below, where α is the angular
acceleration applied to the wheels:

Controller Systemαθd θe θ
−

Figure 3.3.1: Basic Block Diagram of the Angular Control

To convert from torque to acceleration, it is a simple matter of scaling by the wheels’ moment of inertia Iw.
After this scaling, we can draw the Bode plots of the system response, open loop response, and closed loop
response (Figure A.1, Figure A.2, and Figure A.3 respectively).

3.3.2 Velocity Controller

From Equation (8), we have

With some abuse of notation, we can write the transfer function relating the velocity to the pitch angle:

Gv(s) =
g

s
=⇒ Lv(s) = Cv(s)× Angle Inner Loop ×Gv(s) ≈ Cv(s)Gv(s),∀ω < ωdc (Angle) (16)

It is important to note that this is an approximation. In reality, the ground velocity depends both on the pitch
angle and the torque applied to the wheels, according to Equation (5). As such, a more complete controller
would include a feed-forward branch into the velocity dynamics, including the input torque. However, for
simplicity and ease of implementation, we consider ground velocity to be independent of the input torque.
Hence, we use a full PID controller, instead of the expected P-only controller the simplified dynamics would
suggest.

Therefore, setting a desired crossover frequency ωdc to be 10 rad/s, we can extract the Kp,Ki and Kd

coefficients using Equation (17) below by placing two poles and two zeros.

Cv(s) =

(
Kp +

Ki

s
+

Kds

1 + τfs

)
=

Ki

1 + τfs

(
1 +

Kp +Kiτf
Ki

s+
Kd +Kpτf

Ki
s2
)

(17)

Without loss of generality, setting τ1 = 1
2ωd

c
and τ2 = 10

3ωd
c

(one high frequency and another low frequency),
we can obtain the desired performance in practice.

Using the full model, we obtain the Bode plots in Figure A.4, Figure A.5, and Figure A.6 below showing the
system response, the open loop response, and the closed loop response respectively.

3.3.3 Position Controller

Relating ground position to ground velocity is trivial. Position is the integral of velocity:

Gp(s) =
1

s
=⇒ Lp(s) = Cp(s)× Velocity Loop ×Gp(s) ≈ Cp(s)Gp(s),∀ω < ωdc (Velocity) (18)

As such, a proportional-only controller is enough. Setting Kp = ωdc is enough to set the desired crossover
frequency. Using the full model, we obtain the Bode plots in Figure A.7, Figure A.8, and Figure A.9, showing
the system, open-loop, and closed-loop responses respectively.

18

3.4 Yaw Equations of Motion
The wheels are driven by individual torques applied to the left and right motors, τL and τR respectively.
The net torque causing yaw rotation is therefore τyaw = τR−τL. The yaw motion can therefore be described
by Equation (19). If we set τL = −τR, making the input torques equal and opposite, we have a relationship
between the input torque to either wheel and yaw angle. As we are operating stepper motors, it is easier
to work in terms of angular velocity ω, or angular acceleration α to a wheel, as will become apparent later.
This heavily simplifies the equation, and makes the loop implementation more straightforward.

Izψ̈ = τyaw =⇒ ψ̈ =
2τR
Iz

=⇒ ψ̈ = 2α =⇒ ψ̇ = 2ω (19)

With some abuse of notation, we can obtain the transfer function relating yaw angle to input angular velocity
or acceleration to the wheel:

Gω,ψ(s) =
2

s
Gα,ψ =

2

s2
(20)

3.5 Yaw Controller Design
In this robot, turning in place is essential to maze solving. Indeed, in order to discretise the actions the robot
can take, turning on the spot would allow us to not make additional positional considerations. Additionally,
small errors will build up enormously over time, hence we need this controller to be as accurate as possible.

3.5.1 1st Iteration: Modifying the motor controller via acceleration

In theory, adding the obtained required acceleration for yaw turning via a PD controller (no integral gain due
to the dynamics: see Section 3.3.1) to the ground speed obtained via the acceleration from the tilt controller,
should work, by linearity. In practice however, this was not the observed result and we obtained significant
oscillations and jitters from the robot.

This two methods was deemed unsuccessful due to the conflict with the tilt controller: with the addition of
the Raspberry Pi and the power monitoring module to the head unit, the weight distribution and location
of the center of mass significantly changed, which in turn shifted the tilt equilibrium angle to a non-zero
value. As such, the dynamics imply that any change in yaw at a non-zero tilt angle would yield a change in
said tilt angle. Therefore, the tilt controller was constantly trying to fight the changes installed by the yaw
controller. To solve this issue, the addition of a yaw controller was rethought and instead the driver was
modified

3.5.2 2nd Iteration: Modifying the stepper drivers

In practice, although the stepper motor acceleration was thought to give the same velocity, this was not the
case, hence, the two motors were linked so that every acceleration change relating to translational movement.
New parameters and functions were added onto stepper_driver.c allowing us to implement yaw, listed
in Listing A.1.1. By setting the desired step turn in motor_controller.c, the driver determines whether
or not an input velocity is needed via an error calculation, from which a Kp-only controller updates the
yaw_target_speed directly in the driver, using a separate function to the speed update given by the tilt
controller. The stepper_run function then updates the stepper drivers sequentially, adding on each of the
updated speeds together (yaw_target_speed and target_speed). This method gave satisfactory results, as
will later be explored in Section 3.7.4

19

3.6 Experimental Controller Design
From the equations of motion, the outer loops for velocity and displacement/position can be formed. This
will be configured so that the position loop, with a given position set point, gives a velocity set point, and
given the current velocity from the stepper motors, results in a velocity error which then determines the
angle set point for the balance bot. This is so that the robot slightly tilts forward for movement forwards
and same for backwards. This is all easily achieved as the acceleration, velocity can be directly set to the
stepper motors and because the velocity and position can be directly read from the stepper motors. The
frequency of these loops will run slower given which is loop is outermost.

Figure 3.2.2 shows the control dynamics between angle, acceleration, velocity and position.

In order to communicate with the motors, the stepper_driver.c file was written, enabling an instantiation
of a motor struct. Microstepping is the chosen form of speed-setting: this means that we cannot tell the
steppers to have a desired angular acceleration, and instead there is an unknown proportionality constant
modifying the input angular acceleration into observed angular acceleration. For this reason, the Kp,Ki and
Kd coefficients found in simulation are not entirely usable. However this does mean they’re irrelevant: by
keeping the same ratio between the coefficients as in the simulation, we are able to get the best performance
in accordance with our model.

More will be explored in Section 5

3.6.1 1st Iteration: Changing Motor Target Angular Velocity

Changing the motor’s target angular velocity is achieved by gradually changing the velocity every δt until
the input target velocity is achieved.

Although this controller achieves static balance, it still effectively implements several step changes in velocity
over arbitrarily small δt values. Though the oscillations produced are small, this required the Kd to very large
to increase damping and Kp and Ki to be relatively smaller to decrease the amplitude of these oscillations.
However this means that the robot is incredibly poor at handling disturbances, i.e. moving over a cable or
a slight push. Thus this would not be suitable for the 2 outer loops for velocity and position as well as be
incredibly poor at handling yaw.

3.6.2 2nd Iteration: Changing Motor Angular Acceleration

From this, a pure acceleration controller was chosen, directly changing the acceleration of the wheels of the
bot to meet the angle set point. Directly changing the acceleration avoids the step changing velocity problem
and decreases oscillations. This also means that for the inner loop Kp = 1140 can be large and Kd = 435 can
be relatively smaller as the oscillations are tiny when static, as well as clamping acceleration, and damping
is only required for dealing with large disturbances to the system, which with a larger Kp this system can
handle. Ki in this system must be 0. This is because with enough error overtime, a large oscillation will be
sent into the system knocking it over.

For the velocity controller, unlike the angle controller requires some Ki, This is used for dealing with changes
in the environment, so that enough error is summed over time so it can overcome some obstacles. As expected,
its velocity of execution is lesser.

The position controller follows the theory only requiring proportional gain.

3.7 Controller Performance: Simulations VS Experiment
3.7.1 Angle Controller

Simulations show the Kp/Kd ratio must be of 3.4483. In practice, the values that gave the best performance
were:

Kp = 1600 | Kd = 480 | Kp/Kd = 3.33

20

To showcase the performance of this controller, a doublet response test was created. To ensure the robot
wouldn’t fall while testing, some support was given to the head unit, while letting the base unit move freely.
Figure 3.7.1 show the angle loop’s response to this doublet.

Figure 3.7.1: Angle Test Angle Loop Time Response

This shows adequate and satisfactory performance for the angle controller, supplemented by the simulation
results in Figure 3.7.2

Figure 3.7.2: Angle Test Simulated Angle Loop Time Response

21

3.7.2 Velocity Controller

Simulations show we must have Ki = 5Kp and Kd = 0.019Kp. In practice, the chosen values were:

Kp = 0.0066 | Ki = 0.033 | Kd = 0.000121 | Ki/Kp = 5 | Kp/Kd = 0.018

A doublet response test was also chosen to demonstrate the performance of the velocity controller, as is
shown in Figure 3.7.4 and Figure 3.7.4. Although there are significant oscillations in the velocity time
response, our model does not include friction. Friction is a key part in the dynamics of the robot. The
arena’s inherent imperfections and irregularities make it difficult for the robot to traverse space freely with
no interruptions. There is also additional friction between the axle of the motors and the wheels which
contributes to the observed effect. Friction contributes to the natural toppling angle of the robot. The
higher the friction coefficient on the spot the robot is static at, the steeper the angle needed to make it
move from its equilibrium position. Modelling an everchanging friction coefficient varying with the location
the arena is a challenge and one of the shortcomings of this model. Therefore, all the observed oscillations
around the setpoints are due to effects of the environment, namely friction. Nevertheless, the angle data and
response is quite accurate and follows the setpoints well, despite the velocity’s difficulties with the terrain.

Figure 3.7.3: Velocity Test Velocity Time Response Figure 3.7.4: Velocity Test Angle Time Response

Simulation results confirm the theoretical performance of the velocity controller, as can be seen in Fig-
ure 3.7.5. Friction is the limiting factor between a good theoretical performance and our observed controller
in practice.

22

Figure 3.7.5: Velocity Test Velocity Simulated Results

23

3.7.3 Position Controller

Simulation results state that we only require a Kp value corresponding to the desired crossover frequency.
This is also what’s observed in practice, as a value of Kp = 6 fits the requirements and gives adequate
position performance. This can be seen in Figure 3.7.6. Velocity and Angle responses are in Figure 3.7.7
and Figure 3.7.8 respectively.

Figure 3.7.6: Position Test Position Time Response

Figure 3.7.7: Position Test Velocity Time Response Figure 3.7.8: Position Test Angle Time Response

Like in the previous section, there is a significant error in the setpoint, whereas the equilibrium position
is very stable. This is due to the inclination of the arena, where it is significantly easier for the robot to
stabilize its position while going uphill, whereas it’s harder for it to slow itself down when going downhill:
the inherent dynamics of the robot make it harder to respond to a desired position and velocity. This is
once again observed and confirmed in the initial overshoot in velocity and angle in the downhill direction,
compared to the minimized errors obtained going uphill in both. Adding on to this, motor heating plays a
significant factor in performance: after many trial runs, its performance can significantly degrade, leading
to data that doesn’t follow expectations.

In a perfectly flat surface, the simulations done in Figure 3.7.9, Figure 3.7.10, and Figure 3.7.11 (position,

24

velocity, and angle, respectively) show the ideal performances of the controllers on a flat arena. Hence, the
designed controllers are adequate for our application.

Figure 3.7.9: Position Test Simulated Position Response

Figure 3.7.10: Position Test Simulated Velocity Re-
sponse

Figure 3.7.11: Position Test Simulated Angle Re-
sponse

25

3.7.4 Yaw Controller

As was explored in Section 3.6, we have a proportional-only controller, that is only active while the robot is a
state of turning. To test the capabilities of yaw, a step response was plotted as it is the closest response that
will be observed in practice. The yaw and position response are plotted in Figure 3.7.12 and Figure 3.7.13
below respectively.

Figure 3.7.12: Yaw Test Yaw Step Response

Figure 3.7.13: Yaw Test Position Response to a Yaw Step

Due to the unique implementation of this controller, no simulation was produced. Although there is some
error arising in the position while the initial turning is in effect, both the yaw and the position reach
equilibrium well within accepted error thresholds: position has an error of 0.3rad by the time the step
response is over, and the yaw is accurate to 0.001rad after 10 seconds past the initial the step response
instruction. This performance is sufficiently accurate to be included in the final design.

26

3.8 Conclusion
We have established a model describing the dynamics of the system, relating input angular acceleration to
tilt angle, tilt angle to ground velocity, and ground velocity to position. We have also established the validity
of this model through data verification, and simulated test comparisons against real world data. Overall,
adequate performance was obtained after tuning using loop shaping on the three controllers. Limitations
of our model include heating from the motors, the ubiquitous varying friction, and the curved nature of
the arena. This friction is most notable between the wheels and the motors, and between the wheels and
the ground, as the natural toppling angle varies with the location of the robot in the arena, and adds an
unknown to the model. Overall, we have achieved a desirable control system, whose purpose is what it does.

For future work, it is strongly recommended to implement the code to directly output desired angular
acceleration into the steppers of the motor, instead of having to work around it like we had to here. This
would allow for the simulation results to be directly implemented, rather than having to find an unknown
proportionality constant relating the PID coefficients and the actual observed angular acceleration.

27

4 Sensing and Monitoring

4.1 Power Monitoring
An important target for our robot is accurate battery management and power consumption analytics. The
provided power PCB allows for direct connection to battery voltage and current sense resistors for both the
battery and the motor connections.

The input should then be processed by the analog to digital converter channels on the ESP32 for processing.
However, a direct connection between the J2 port on the PCB and the ADC ports of the ESP32 would cause
the destruction of the board.

In this section the design of an appropriate analog interface between the power PCB and the ESP32 is
presented, along with the calibration of the ADC channels on the ESP32 for accurate measurements.

Power Management Unit Requirements
User Requirements

Power Monitoring The user should see the power consumed in Watts
and in real time (+-30s) by both the motors and
the components connected to the 5V power supply.

Battery Monitoring The user should see the remaining battery life be-
fore shutdown of the robot as a percentage or user
design element.

Technical Requirements
Hardware Interface A Hardware Interface needs to be constructed to

interface between the J2 port pins and the micro-
controller ADC. The interface needs to step down
voltages from 15V and amplify voltage differential
of 5mV to a voltage range between 0 and 3.3V for
the ADC. This should be done accurately and with
minimal noise (+- 1mV)

ADC Calibration The microcontroller ADC needs to be suitably cali-
brated to read voltages within an accuracy of 20mV
as stepped downed voltages are subject to signifi-
cant absolute errors.

Software Interface The power management controller needs to be suit-
ably interfaced with the user interface. Polling of
the ADC needs to be done frequently (+-10s) while
not blocking critical control functions. The battery
voltage needs to be transferred to a user-readable
format (percentage) and the current sense need to
be transferred to immediate power.

28

4.1.1 Hardware Interface

The interface, figure 4.1.1, is based on the Texas Instrument design [2].

−

+

Va

Vb

Vref

Vout

R1 R2

R3 R4

Figure 4.1.1: Differential Amplifier with Voltage Reference [2]

With R1=R3, R2=R4, the output is the following [2]:

VO = (VA − VB) ·
R4

R3
+ Vref (21)

The gain and reference voltage were carefully chosen to match the range of the ESP32 ADC. The gain was
selected to produce an output voltage to ADC of less than 3V if possible. The reference of 1.25V was used
as the ADC is inaccurate at low measured votlages.

System Voltage Range [V] Gain Reference [V] Ouput [V]
Battery Voltage 14.2 - 8 1/10 1.25 1.25-2.75

Battery Current Sense 5-4.97 (3A) 50 1.25 1.25 - 2.75
Motor Current Sense Vbat-Vbat-0.01 (3A) 50 1.25 1.25 - 2.75

Table 4.1.1: Differential Amplifier Gain Table

Due to the high input voltage requirements, and to avoid the need to use potential dividers at the amplifier
inputs, it was decided that the upper rail be connected to the battery voltage. The LMC648x was chosen
for this purpose as it features a quad op-amp packaging, rail-to-rail inputs, high power supply rejection ratio
and has a maximum upper voltage rail of 16V [8].

The decision to use this op-amp was motivated by the simplicity of powering the amplifier through the
battery voltage, combined with having a single op-amp which reduces potential failure modes as identified
in our failure modes and effects analysis. Two 1uF capacitors were used to perform averaging on the battery
current sense in order to remove high-frequency noise.

The design was modelled using CAD software, figure 4.1.2, and was fully tested on a breadboard before
being transferred to a strip board for completion. The decision to use a strip board stems from the increased
reliability as identified in our failure modes and effects analysis, found in A.3.

29

Figure 4.1.2: Hardware Interface Schematic

Figure 4.1.3: Hardware Interface Construction

30

4.1.2 Software Interface

Once a reliable interface between the power PCB and the ESP32 was established, the necessary software
needed to be created to accurately sample the voltages and transcribe them to power or percentage ratings.

Firstly, the ADC was characterized to understand its operating range. The precision was set to 12 bits
with 128 averaged samples and the measured voltage was recorded. Figure 4.1.4a shows the measured ADC
voltage against the input voltage while figure 4.1.4b shows the absolute error in measured voltage.

(a) Output Voltage against Input Voltage (b) Absolute Error in Output Voltage

Figure 4.1.4: ADC Characterization (PlatformIO)

We conclude that the ADC is accurate between 0.2 and 3.0 Volts.

The use of ZephyrOS, required for the other subsystems, meant that the ADC came uncalibrated. A new
characterisation was achieved to achieve calibration in INSERT FIG.

(a) Output Voltage against Input Voltage (b) Absolute Error in Output Voltage

Figure 4.1.5: ADC Characterization (ZephyrOS)

To correct the significant ADC measurement error, a second degree polynomial was fitted to the measurement
data in order to accurately remove the non-linearity. The polynomial coefficients were then used to calculate
the correct ADC reading.

31

Figure 4.1.6: Calibration Curve for ADC

int32_t correct_adc_error (int32_t read ing) {
re turn (−2.2517e−5 ∗ read ing ∗ read ing) + (0 .83558 ∗ read ing) + 57 . 2 26 ;

}

Source Code 4.1.1: ADC Correction Polynomial

The states are measured every second through a separate thread which was declared as non-blocking so that
the function of the ADC does not affect the motor controller or stepper driver.

Determining the power through the motor and 5V system is straightforward as the relationship is linear.
However, determining the remaining battery percentage as a function of the battery voltage is more difficult,
as battery percentage is a non-linear function of the battery voltage.

Thankfully, the discharge information provided by the battery manufacturer allows us to estimate the re-
maining battery percentage [3].

Figure 4.1.7: Battery Discharge Curve [3]

32

With the additional information that the batteries are mounted as a package of 12 cells in series, we can
construct the following percentage table:

Voltage [V] Discharge Capacity 15A [min] Percentage
15 5.0 100

13.2 3.8 76
12.96 1.6 - 2.4 32 - 48
12.24 0.8 16
9.6 0 0

Table 4.1.2: Discharge to Percentage Conversion

Due to the low granularity of the battery percentage curve, it was decided to display the information to
users using a bar chart that utilises the setpoints found above.

[0 0 : 0 0 : 4 6 . 9 6 1 , 0 0 0] <in f > adc : Battery Voltage : 15658 mV, Battery Current : 430 mA, V5 Current
: 190 mA

[0 0 : 0 0 : 4 8 . 1 5 4 , 0 0 0] <in f > adc : Battery Voltage : 15635 mV, Battery Current : 400 mA, V5 Current
: 190 mA

[0 0 : 0 0 : 4 9 . 3 4 8 , 0 0 0] <in f > adc : Battery Voltage : 15630 mV, Battery Current : 440 mA, V5 Current
: 190 mA

Source Code 4.1.2: ADC Readings, Full Interface

4.1.3 Conclusion

To conclude, the power monitoring unit was found to adequately meet the requirements. Future work should
focus on the introduction of precision voltage clipper circuits which would improve the reliability by adding
overvoltage and overcurrent protection to the ESP32 ADC.

Additionally, more work should be done to allow for the automatic calibration of the ESP32 ADC using
ZephyrOS, potentially contributing to the Zephyr Project .

33

4.2 Sensing
4.2.1 Sensor Choice

In order to map out the maze as the robot traverses it, ultrasound sensors are the perfect balance of cost to
performance, allowing precise measurements of up to 3mm of accuracy up to 4m away [4]. For this reason,
the HC-SR04 ultrasound sensor (Figure A.10) was chosen from RS components at £2.1. In comparison,
other sensors like LiDAR offer much better performance, but are expensive and would make us go over the
maximum budget. Infrared is also a potential contender, but would require us to make a separate board
with our own design of opamps and filtering, as the most common pre-made board, the HCSENS0016, has
a limited range unfit for our needs.

4.2.2 Physical Implementation of Sensing

For the maze solving 3 ultrasound sensors were required. One for the front and two for each of the sides.
A back sensor is not necessary as that section of the maze has been mapped out already. These sensors
are mounted to the bot using clips which snap onto the carbon fibre rods, this is done for secure mounting
as well making the sensors easy to detach from the bot. However on of the specification requirements is to
make a head unit for the balance bot. As the sensors are not going to be mounted on the head unit. A
simple cap was designed as the head unit for the balance bot.

Figure 4.2.1: Ultrasound Sensor
Clip

Figure 4.2.2: Bot Head Unit Cap

From this these will be mounted on the bot as such:

34

Figure 4.2.3: Parts Mounted onto the Bot

4.2.3 Maze Error Handling via Sensing

There are two main errors that can occur, one while the robot is static and the another while the robot
is moving. The first is the robot not being in the centre of its square when static. This is resolved by
performing the rough scheme using the front ultrasound sensor. This is done by the method of half squares.
It is not important for the bot to be in the very centre of its current square, it only needs to be in the centre
of the axis that the front sensor is facing. To achieve this multiples of 0.125m (half a unit square) is used.
This issue will crucially arise when the robot turns. This will shift the robot off centre in the square. Thus
when the robot moves one square forward the it needs to account for the robot being off centre. Thus we
use front sensor distance mod 12.5 + 12.5 + wheel sensor distance as the distance the bot needs to move
forward to be centred in the next square.

The second is an obstacle suddenly appearing in front of the robot both while static and while moving. This
can be achieved by making a 10 entry FIFO. The error will occur, be passed through the FIFO to find the
average distance read by the ultrasound sensor and given it runs fast enough will pass through.

4.2.4 Inertial Measurement

The IMU’s accurate function is crucial to the completion of the Control Unit. The sampling rate must be
high enough to allow for the control system to be stable. The angles that are detected shouldn’t deviate from
its actual attitude when the sensor is actually accelerating. This can be an issue with simpler algorithms
which only treat acceleration caused by gravity as the only force applied on the sensor.

35

Figure 4.2.4: Force Diagram

• Accelerometer Gyroscope Sampling Method:
The sensor which we are using (MPU6050) has an accelerometer and a gyroscope on one single die. It
also contains a co-processor (DMP) which automatically filters the raw measurements and combines
the accelerometer and gyroscope data to provide an attitude reading.
This gives us the option to:

– Sample the raw data at 1KHz

– Sample pre-proccessed data at a maximum of 200Hz.

In order to choose between the two, they were both tested with an accelerating body held at a constant
pitch. The resulting samples are shown in the plot below:

Figure 4.2.5: Filtered and Unfiltered Data

As shown in the figure: 4.2.5, the DMP-processed data is much more accurate and deviates far less
from 60°. Although it would be possible to low pass the raw data, this would offset the usefulness
of having small sampling times. Additionally, according to the Nyquist sampling theorem, we will be
able to sample data up to 100Hz, which we will never be in the position to do. This is well within the
requirements, allowing to say we can minimize effects of quantization, and maximize the approximation
as a continuous-time system.

36

The DMP is used by flashing its code over the I2C bus and then setting its configuration parameters.
The manufacturer (TDK Invensense) provides a portable set of source code which needed I2C and
timing functionality implemented.

• Calibration tools:
It is important to be able to remove consistent error. The DMP has an inbuilt factory calibration
routine which works by the chip artificially introduces an electro-mechanical perturbation to the sensors
and measures offset characteristics. The robot is programmed to run this utility on boot or can be
programmed to store the offset values. [9]

37

5 Software

5.1 Overview

Software Requirements
User Requirements

Power Monitoring The user should see the power consumed in Watts
and in real time (±30s) by both the motors and
the components connected to the 5V power supply.
This prevents accidental damage to the batteries.

Control of the robot The end user must be able to control the main func-
tionality of the robot, including manual driving of
the robot as well as the control and monitoring of
the robots maze solving capabilities. This means
that the software must interface all the sensors, to
co-ordinate the actuators, and provide feedback to
the user interface.

User experience The user experience must be intuitive and reliable,
providing concise debugging feedback if anything
goes wrong. For ease of use, control loop tuning
parameters should be remotely tune-able restart-
ing. Reliability measures include ensuring that ran-
domly closing the user interface doesn’t cause any
erratic behaviour.

2-wheeled driving The software must implement the necessary control
systems to allow the robot to stably drive whilst
balancing on two wheels.

Autonomy The robot must be able to autonomously traverse a
maze, mapping it out as it goes along until it arrives
at a desired "end position" in the maze, effectively
solving it.

Technical Requirements
Modularity, efficiency and portability To make the robot as flexible and cost effective as

possible, it is important that interchanging individ-
ual components, or adding new components alto-
gether is a straightforward process. The software
should not be wasteful, nor platform specific (whilst
not sacrificing maintainability) such that more af-
fordable, less (or more) powerful hardware can be
used down the line to optimise production costs.

Interfaces The software should provide interfaces not only
with the various sensors and motors, but exter-
nally between the various software driven modules
and internally between concurrent threads and call-
backs. this means making use of synchronisation
primitives where necessary to prevent concurrency
bugs, and extensively testing custom protocols for
robustness.

Data Processing The software should act as more than simple plumb-
ing between modules - it must concurrently perform
the necessary processing on the various data to ful-
fill the user requirements.

38

5.1.1 Overall implementation

Below is the overall architecture of our system:

Figure 5.1.1: Overall architecture

Below is the overall software architecture, explained in greater detail later.

39

Figure 5.1.2: software architecture

40

5.2 Firmware
The Firmware is the code designed to run on the microcontroller, it requires reliability (the microcontroller
must not crash and must do processing in real time), efficiency (using resources efficiently and using vendor
features where possible), and capability (must implement all of our required functionality).

Firmware Requirements
Technical Requirements

Robot Balancing
Accelerometer/Gyroscope Data must be sampled from the sensors accurately

and without blocking the operation of the robot.
Tilt angle, yaw and acceleration along the robot’s
longitudinal access must be readily available.

Stepper Motors Unit to be designed so that a desired acceleration
is given as input and achieved by the stepper mo-
tors. The unit must also keep track of the distance
travelled by the motors.

Control Algorithm Need to implement the PID controller structure laid
out in the Control Unit section. The operation must
be fast enough to satisfy the control requirements
with regards to sampling frequency (<5ms).

Interfacing Other Hardware
Power Monitoring Needs to accurately sample ADC values and convert

them to power and battery percentage ratings. This
must not block the control operation.

Ultrasonic Sensors Needs to design and implement a driver for the ul-
trasonic sensors to accurately read the distance to
an obstacle.

Interfacing Server
Raspberry PI Needs to receive and process commands from the

Raspberry PI without blocking and be able to send
data back to the PI.

We decided to use the provided ESP32 as our microcontroller due to it already being provided, and also
meeting our requirements. It also has plentiful IO and is a popular, well documented and supported platform.

Instead of the provided Arduino-based starter code, we instead opted to use Zephyr RTOS, a Real-time
Operating System, for the following reasons:

• It provides advanced scheduler that allows us to run multiple simultaneous threads that handle dif-
ferent activities, as well as providing synchronization primitives (e.g. mutexes & workqueues). This
is extremely useful for such a system where multiple tasks are performed simultaneously with data
transfer between them in a thread-safe way.

• Excellent support of the underlying ESP HAL, allowing full use of all required peripherals (I2C, ADCs,
interrupt-driven UART, non-volatile-storage etc..), as well as timers, interrupts and even symmetric
multiprocessing [10], allowing us to make fullest use of the hardware we are given.

• Zephyr projects are very portable, requiring only a device-tree overlay to support a new board/core,
meaning none of the C code needs to be changed to port the firmware to another board. This system
is famously used to configure the Linux kernel to support different hardware. Zephyr comes with pre-
made device-trees for each supported platform, which must be modified with a overlay to overwrite
parts of the default device-tree. device-tree bindings (yaml files) are used to compile-time check the
device-tree by specifying the allowed configuration options.

• Zephyr is configurable through it’s Kconfig system. This allows unwanted features to be left out,
reducing the size of the firmware image

41

• Zephyr can be configured with a whole host of other useful features, such as a GDB stub, a customisable
shell and and even a thread analyzer.

5.2.1 Robot Movement

To facilitate switching between manual and maze solving mode, our motor controller operates in two modes.

Both modes share a common angle and velocity controller to stabilize the robot. In order to move a desired
position, an outer loop is added to create a position controller. In manual mode however, the setpoint of the
velocity controller is directly controlled and the position controller is bypassed. The inner angle loop gets
its error from the MPU, whilst the outer loops get their errors from the motor driver.

Turning is handled by applying a direct velocity differential to the two motors, with maze mode using a
controller to turn the robot by a desired angle. The controller uses feedback from the motor driver, as
integrating steps has less error than the MPU.

The design and implementation, as well as test cases to showcase the performance of these controllers is
explored in Section 3.

5.2.2 Stepper Driver

The motors need to be stepped every time they are to move: a motor driver was written to step the motors
at the correct intervals to rotate the wheels at the desired speed. In order to make the steps more precise,
the microstepping technique was used, dividing each physical step angle on the motor into finer steps.

Due to the driver having to run constantly, it has to be put in its own thread so as to not block other parts
of the firmware. The stepper driver thread provides interfaces for setting a desired common acceleration,
and a differential velocity between the individual motors. In order to provide feedback to the control loops,
the stepper interface also provides the robots acceleration and displacement.

5.2.3 Ultrasonic Sensor Implementation

We decided to use three ultrasonic sensors - one on the front, one on the left and another on the right. One
on the rear of the robot is not necessary as it will have come from that direction (and therefore know what
is there), or rotated, in which case either the left or right sensor will have already measured that direction.

The driver is implemented as a custom zephyr driver conforming to the sensor subsystem. The sensors have
a trigger pin and an echo pin, and to measure the distance a pulse is sent on the trig pin, and the time is
measured for a pulse on the echo pin. To implement this in code we set a callback on the echo pin, pulse the
trig pin, and in the callback handler we measure the time taken.

Measuring distances from all ultrasonic sensors simultaneously is not possible, as the emitted ultrasonic
waves may be received by other sensors. Therefore a global mutex is used in the driver, ensuring only one
sensor can be measured from at once.

From our code we can then measure distances using Zephyr’s sensor API. We first request a reading using
sensor_sample_fetch_chan, and the resulting value can then be accessed using sensor_channel_get.

5.2.4 Non-Volatile storage

PID values are stored in the ESP32’s non-volatile storage, which are loaded on startup. This means the
client application can update PIDs, either just temporarily in the robots memory, or persistently by loading
saving them to the NVS. To implement this we use Zephyr’s Non-Volatile storage API, and use the ESP32’s
storage partition area in flash for storage.

5.2.5 Communication with the Raspberry Pi (Server)

The ESP32 must communicate with the Pi Server to receive commands, such as movement requests, ADC
Reading requests, PID update/retrieve requests.

42

Instead of using UART0 (on the USB port) we decided to instead use UART2 so that we could continue to
read logs/flash firmware from our devices over USB with ease. The communication is designed in a way such
that the Pi must first make a request to the ESP32 which may then respond, instead of fully bidirectionally,
since otherwise both devices could start transmitting at the same time since when the devices listen for the
reply they cannot be sure if it is the reply to their request or an entirely new request.

We tested several packet layouts starting with encoding commands as new line terminated text. A mixture
of text and bytes, however the use of raw ASCII proved to be wasteful, with each character taking up at
least a whole byte. This also came with the issue of ensuring that raw data bytes didn’t take on the form of
a newline.

Our final improved protocol is as follows: (see src/uart/uart.c for full implementation).

• The first byte specifies the size n of the payload. This is done since the enclosed message can contain any
valued/ordering of bytes, including newline/carriage return/null termination characters, so listening
for such characters to mark the end of the message simply cannot work. Therefore the software will
listen for this number of many bytes following it.

• The next byte specifies the message type (e.g. ADC read request).

• The next n bytes form the struct for the respective message type.

Protocol Evaluation
Command Method bytes (for PID packet) Overheads
ASCII commands 17 ASCII to float / int Conversion &

Regex
Mixed Commands 9 Regex
Polymorphic struct (our solution) 7 Typecasting has practically 0 over-

head, so the decoding overhead is
very small

Table 5.2.1: Protocol Evaluation

This is implemented as follows:

• When the ESP32 receives a character over UART, our callback function is called from an IRQ.

• This first character is the size n, and we wait for n more characters to be received, and place them in
consecutive places in our buffer.

• When n characters have been read, this buffer is placed in our message queue[11], which is delivered
to a separate thread, and the index is reset to 0. Sending this to a different thread via a message
queue is very important, since it is vital we don’t block in an interrupt request. The other thread can
then process this message (and optionally block), and this is not a problem since this thread can be
interrupted, and the message queue also allows for messages from the interrupt handler to build up to
a given size.

• The first byte of this message is the message type. Message types are stored in an enum, allowing quick
checking of message type in a switch statement. The respective handler is called.

• The handler will then cast this buffer to the respective struct for that message type. The performance
is great as the input buffer can simply be cast to the struct from which values can subsequently be
retrieved, with 0 memory copy operations since placement into the message queue.

5.2.6 Evaluation

From a qualitative standpoint, all our desired functionality works extremely well and reliably during all our
testing, and due to us using absolutely no dynamic memory allocation it is unlikely to crash after running
for long periods.

43

We can also use tools to determine some metrics about the performance. Zephyr’s thread analyzer allows
us to determine what threads use the most CPU, and how much of its allocated stack each thread has used.
We compiled the firmware with it enabled, and after 2 minutes, we collected the following results.

Thread analyze :
: s t epper_dr iver : STACK: unused 1752 usage 296 / 2048 (14 %); CPU: 7 %

: Total CPU cy c l e s used : 2026917572
: uart_handler_tid : STACK: unused 888 usage 1160 / 2048 (56 %); CPU: 0 %
: : Total CPU cy c l e s used : 2527471
: thread_analyzer : STACK: unused 2704 usage 1392 / 4096 (33 %); CPU: 0 %
: : Total CPU cy c l e s used : 64578855
: motor_contro l l er_t id : STACK: unused 2784 usage 1312 / 4096 (32 %); CPU: 1 %
: : Total CPU cy c l e s used : 286428340
: adc_measure_tid : STACK: unused 680 usage 344 / 1024 (33 %); CPU: 8 %
: : Total CPU cy c l e s used : 2346960189
: i d l e : STACK: unused 824 usage 200 / 1024 (19 %); CPU: 83 %
: : Total CPU cy c l e s used : 23481415681
: ISR0 : STACK: unused 1872 usage 176 / 2048 (8 %)

The threads are as follows:

• stepper_driver: Steps the motors. Mostly sleeps but runs at a fast rate so uses a moderate fraction of
the CPU cycles.

• uart_handler_tid: Handles inputs from the UART, fully interrupt driven so uses very few CPU cycles.

• motor_controller_tid: Runs the PIDS to balance the robot, mostly sleeps so uses few of the CPU
cycles.

• motor_controller_tid: Runs the PIDS to balance the robot, mostly sleeps so uses few of the CPU
cycles.

• adc_measure_tid: Continuously samples the ADC so uses a fair amount of CPU.

The CPU is idle for 83% of clock cycles meaning there is no issue with resource contention.

44

5.3 Server
5.3.1 Overview

Our system needs a server that will run on the robot, that allows communication with the client, performs
the necessary logic to solve the mazes, and to send/receive data from the ESP32.

Server Requirements
Technical Requirements

Efficiency The Raspberry PI has very limited resources avail-
able. The choice of operating system must be as
lightweight as possible while maintaining the other
requirements.

Interaction Must be able to communicate and interact with
both firmware and client. It must send instructions
to the firmware and pull or push certain parameter
values like control PIDs.

Reliability Must not crash and must be bug free. While not
fatal for the robot, a crash would ruin the user expe-
rience and effectively prevent a maze being solved.

We decided to use the Raspberry Pi we were given as it meets our needs. For the Operating System we
opted to use Alpine Linux:

• Can be run in diskless mode where the system is run entirely from memory - this massively improves
file I/O performance and reduces SD card wear. Disk modifications can be persisted if desired.

• Alpine software repo contains all the packages we will need.

• Extremely minimal, our install uses only 40Mb of RAM at idle, with only a handful of processes, which
is important for the Pi which already has very limited resources. Explicitly does not include a Desktop
environment.

• Excellent support for the Raspberry Pi, and supports use of peripherals such as the full hardware
UART using the disable-dt overlay.

We also decided to use Rust for the following reasons:

• Extremely performing systems programming language that compiles directly to machine code, which
is important due to the limited processing power of the Raspberry Pi.

• Rust’s ownership system and borrow checker prevent entire categories of memory errors like dangling
pointers and buffer overflows. This is important for this system due to our requirement of stability.

• Rust programs will not segfault or unexpectedly crash, and must explicitly handle all errors (e.g. I/O
errors).

• Rust has excellent support for concurrency, and the ownership system and type system help catch
concurrency bugs at compile time.

• Rust is well supported on the Pi (aarch64-unknown-linux-musl).

45

5.3.2 Implementation

The server is connected to any number of clients over TCP, using Capnproto remote procedure calls. This
allows clients to send requests to the server, such as instructing it to start solving mazes, updating PID
values, or polling the state of the maze from the robot.

It is also connected to the ESP32 using UART - The protocol has been discussed in the firmware section,
and the Rust implementation mirrors it.

The following data structures are created:

• A UART communication object referring to the UART interface from which bytes can be read/written
to. It is very important that this interface is only used at once (e.g. it must be forbidden for two threads
to write consecutively before the first reply has been received), so we therefore place in a Mutex to
enforce only one access at once. This is wrapped in an Arc, to allow sharing between threads, as
described later.

• A struct containing all state - this is largely maze state (a representation of the robots knowledge of
what exists in the maze). This is wrapped in an RwLock, which allows either a number of readers or
at most one writer at any time, which is also nested within an Arc (a thread-safe reference-counting
pointer), allowing it to be given to multiple threads.

• A mpsc object (a Multi-producer, single-consumer FIFO queue), which is a channel that can cross a
thread boundary with both multiple senders and one receiver.

The following threads are then created:

• A main "event loop" that executes the maze solving algorithm and communicates with the ESP32 over
UART. It receives the receiver side of the MPSC so can see what clients want the robot to do, and
logic is implemented to change what it is doing based on current state and requests. This thread has
access to the UART which is used to command the robot.

• Threads are also created for each incoming client TCP connection to handle RPC requests from clients.
They are given a MPSC sender, allowing it to submit request for actions that the server can perform.
Some request types need to communicate with the robot directly (e.g. setting/retrieving PID values)
so it also has a copy of the UART object (hence the importance of the Mutex). The MPSC is necessary,
since the RPC handler is not capable of knowing if the robot is currently moving one unit square, so
therefore it is sent to the main thread, which can retrieve this request from the MPSC once it has
finished moving and is able to service new requests. This is able to eliminate edge cases where clients
send conflicting/nonsensical requests.

On startup, the server requests the uptime from the ESP32 over UART, to test the communication link.
The server then starts the main event loop, and places the robot in manual mode. It then waits for requests
coming from clients. The maze state is reset to default (empty with only outer walls),

The client periodically polls the state using the RPC connection, and receives the current maze state, along
with battery ADC readings which are requested from the ESP32.

To start the maze solving, the client will send a MazeStartRequest, which is sent to the main thread. Upon
receiving this request, the server will set the mode to Maze solving and runs an iteration of the maze solving
algorithm which determines the next square to move to. If the rover is not facing the correct direction to
move, the server will send a rotation request to the ESP32, and will poll the robot, waiting for completion.
Now that it is facing the correct direction, the server will send a move request to the ESP32 which will move
it one unit in the direction it is facing. It can now see if there are any queued requests in the MPSC channel
(such as stopping the maze solving algorithm), and if not, will continue - in this case it will keep solving the
maze step by step.

46

5.4 Client
5.4.1 Overview

The client is a program running on an end user’s device, which interfaces with the server running on the
Raspberry Pi.

Client Requirements
User Requirements

Displaying Information The client must display the battery voltages, cur-
rents, the current state of the maze and position of
the robot.

Mode Switching The client must allow for mode switching between
manual control where a user input is directly fed
as a set point for the control algorithm, and maze
mode, where the robot can autonomously solve a
maze it is placed in.

Uploading Information The client must allow for parameters to be entered
by the user to be uploaded to the robot such as PID
values for the control algorithms.

Appearance The user interface must be intuitive and visually
appealing. A first time user should be able to ef-
fortlessly operate the robot.

We therefore decided to use Rust for the client, as

• Rust was already in use on the server, allowing code reuse for certain parts.

• Rust supports GUI libraries - we decided to use eGUI due to it being reasonably simple, fast and
supporting all needed UI features (e.g. buttons, text inputs, as well as arbitrary painting which we
need for rendering the maze).

To maximise reliability, the client’s internal state must only affect whats shown on the the UI, such that
an internet cutout doesn’t cause the robot to behave erratically. To achieve this, most of the UI elements
simply trigger a remote procedure call, and populate the UI with the response.

5.4.2 Implementation

To communicate with the server, we use Remote Procedure Calls. Since requests may take a long time
(100ms+, especially if I/O operations are required on the server), these requests must happen in a different
thread to the thread which renders the UI, otherwise the UI would be hang until the server responded and
the client could continue rendering.

To implement this we use a MPSC, which is a channel that can cross a thread boundary with a sender which
is given to the renderer thread, and a receiver which is given to the RPC-sender thread. Furthermore, a state
struct is created that contains all data needed to render the UI from, such as the robot battery voltages,
maze state etc... . This state struct is also handed to both threads, and is nested within a RwLock, which
allows either a number of readers or at most one writer at any point in time (needed for thread safety),
which is also nested within an Arc (a thread-safe reference-counting pointer), allowing it to be given to both
threads.

When the user interacts with the UI, e.g. presses a button that changes the robots operating mode, a
message is sent from the UI thread to the RPC-sender thread. It then sends the request and waits for the
reply, all whilst the UI thread continues rendering. When the server responds, the state struct is updated,
which the UI thread will then use when rendering the next frame.

Alongside this, the client also periodically polls the server, for e.g. new battery voltage values or new maze
state, which updates the local state struct.

47

5.4.3 Architecture overview

The client is split up into 3 main interconnected components. The UI, the interface with RPC server, and the
glue that connects the two systems together. Rust was chosen again for our client to allow code reuse in our
codebase, which much of the knowledge gained from working on the client being transferable to developing
the server, and vice-versa. The client makes extensive use of Rust’s memory and thread safety features,
allowing us to avoid concurrency issues.

This meant that we had to use the rust implementation of the capnp rpc client, which is a relatively exper-
imental library with limited functionality. The UI implemented with eGUI, running natively with eframe
because a group member has prior experience with the library, and it is easy to use and fast to develop for.

5.4.4 UI

Figure 5.4.1: UI Interface in maze mode

On the left of the client application is a mode selector that selects whether the robot is in manual control
mode or maze solving mode. Below is a panel that displays the robots’ power readings, and there is also a
panel that can set PID values remotely.

The right side changes based on the current mode - in maze mode it displays a rendering of the maze as it is
known to the robot. Walls that are known to exist are displayed in green, walls that are known to not exist
are displayed in red, and walls that are unknown are displayed in white. The outer walls start in a known
existent state. Due to the way the maze is represented in memory (each cell only contains a left and top
wall to avoid repeated walls), there needs to also exist an extra row and column of cells on the bottom and
right, and some of these walls can be set to known nonexistent. The maze will update as the robot discovers
the maze using the polling functionality described.

48

Figure 5.4.2: UI interface in manual mode

In manual mode we are able to control the robot as shown above. There are also keyboard keybinds for ease
of use. These are sent over RPC to the server where it is handled.

49

6 Conclusion
This project has successful produced a self-balancing, two-wheeled maze solving robot with battery manage-
ment. From this we have succeeded in implementing a Zephyr operating system allowing for multi threading
communicating with a robust memory safe RUST server between the ESP 32 and Raspberry PI all of which
has a deploy-able tech stack that can be implemented on most micro controllers. This departure from the
initial platformIO code, has allowed for successful parallel implementations for the battery management
module, complex motor control system involving, acceleration, speed, position and yaw and finally multiple
ultrasound sensors for fast maze mapping. More importantly, it allows a reproducible tech stack on another
micro controller which improves product deploy-ability. The maze on which the product is to be deployed
can be modified in a modular fashion.

Time permitted, the UART serialisation packs could have been made a single byte smaller. For the battery
management side, a breaker circuit may have been devised in the event of extremely high current draws.
Furthermore trigonometric implementations could have been used to accurately calculate the angle turned
for yaw. However these improvements are either minor and inefficient to implement time-wise.

Throughout this project, we learned a multi-disciplinary set of skills, ranging from how to develop concurrent
interconnected system in Zephyr and rust, to modeling and stabilizing unknown systems. We also learned a
variety of soft skills such as how to collaboratively work on a code base, and make optimal use of individual
group members technical strengths.

50

A Appendix

A.1 Figures

int32_t yaw_step_timer ; // time s i n c e l a s t s tep (us)
int32_t yaw_step_period ;
int32_t yaw_current_speed ;
int32_t yaw_target_speed ;
int32_t yaw_position ;
int32_t yaw_rotation_target ;

[. . .]

void stepper_set_yaw_speed_rad (s t r u c t s tepper_state ∗ s con f i g , f l o a t speed_rad) ;

void stepper_set_yaw_steps_rad (s t r u c t s tepper_state ∗ s con f i g , f l o a t pos) ;

Source Code A.1.1: Additional Parameters and Functions Needed to Implement Yaw

Figure A.1: Tilt Natural System Response Figure A.2: Tilt Open Loop System Response

51

Figure A.3: Tilt Closed Loop System Response

Figure A.4: Velocity Natural System Response Figure A.5: Velocity Open Loop System Response

52

Figure A.6: Velocity Closed Loop System Response

Figure A.7: Position Natural System Response Figure A.8: Position Open Loop System Response

53

Figure A.9: Position Closed Loop System Response

Figure A.10: HC-SR04 Ultrasound Sensor Board [4]

54

MOVE & DISCOVER FACESPLAN ROUTE

DONE

START

Figure A.11: Flood Fill Algorithm Iterative Solving Demonstration

55

A.2 Bill of Materials

Item # Description Quantity Price (£)

Power Monitoring
1 LMC6484AIN/NOPB Op-amp 1 2.87
2 Fixed Shunt Voltage Reference 1.235V 1 0.60
3 RS PRO PCB Terminal Block 5 3.23
4 STRIPBOARD MEDIUM 95mm X 127mm 1 1.44

Sub Total: 8.14

Sensing, Maze Building & Modifications

1 HC-SR04 Ultrasound Sensor 6 2.1
2 Sensor Mount (3D Printed) 3 from lab
3 T-Juntion Maze Holder (3D Printed) 15 from lab
4 Corner Piece Maze Holder (3D Printed) 15 from lab
5 Side Stand Maze Holder (3D Printed) 15 from lab
6 Robot Cap (3D Printed) 1 from lab

Sub Total: 12.6
Total: £20.74

Table A.2.1: Complete Bill of Materials

56

A.3 FMEA Analysis

Table A.3.1: FMEA Process Identification and Classification

P
roject

E
ngiB

eers
B

alance
R

obot
Sub

A
s-

sem
bly

P
ow

er
M

anagem
ent

U
nit

P
repared

by
D

ylan
T
oussaint

A
pproved

by
H

ector
O

ga

P
age

1
of

2
N

otes
P
ow

er
M

onitoring
SubU

nit
F
M

E
A

P
rocess

P
urpose

P
otential

Failure
M

odes

Severity
P
otential

C
auses

of
Failure

O
ccurence

P
rocess

C
ontrol

D
etection

R
P

N

P
ow

er
M

oni-
toring,
B

attery
M

anage-
m

ent

R
obot

Shutdow
n

D
ue

to
Low

B
attery,

Fuse
B

low
causing
R

obot
Shutdow

n.

7
Short
betw

een
V

bat
and

G
round.

7
Short
identified
through
blow

ing
of

Fuse.

1
49

Failure
of

hardw
are

m
ount,

breadboard

7
Loose

con-
nections,
short

con-
nections

on
breadboard

3
H

ard
to

identify
5

105

C
om

ponent
Failure

5
B

ent
P

ins,
Fall

D
am

-
age

4
P

hysical
Inspection,
Inspect
w

ork-
ing

w
ith

probes

2
40

57

Table A.3.2: FMEA Recommend Actions and Action Taken

P
roject

E
ngiB

eers
B

alance
R

obot
Sub

A
s-

sem
bly

P
ow

er
M

anagem
ent

U
nit

P
repared

by
D

ylan
T
oussaint

A
pproved

by
H

ector
O

ga

P
age

2
of

2
N

otes
P
ow

er
M

onitoring
SubU

nit
F
M

E
A

A
ction

R
ecom

-
m

ended

A
rea/P

erson
R

esponsi-
ble

D
elivery

D
ate

A
ction

T
aken

Severity
O

ccurence
D

etection
R

P
N

Solid
Iso-

lation
of

V
bat

and
G

round.
T
esting

of
pow

er
con-

sum
ption

through
A

D
C

and
bench
pow

er
supply

for
validation

D
ylan

T
ou-

ssaint
14/06

Solid
Iso-

lation
of

G
round

and
V

bat

7
2

1
14

U
se

a
secure
m

ounting:
stripboard

D
ylan

T
ou-

ssaint
14/06

Soldered
using

strip-
board,

use
of

term
inal

blocks

7
1

3
21

U
se

as
few

com
po-

nents
as

necessary

D
ylan

T
ou-

ssaint
14/06

U
sed

quad
m

ounted
op-am

p
instead

of
m

ultiple
chips

7
2

1
14

58

A.4 Risk Assessment

Risk Explanation Mitigation I P S
Burn Electrical Short circuit,

from hot components or
traces. Hot Soldering Iron.

Include short-circuit pro-
tections (fuse), inspect
constructed circuits,
never touch circuits while
power is being delivered.
Use soldering iron carefully,
never touch hot soldering
iron tip, use soldering iron
holder

2 2 4

Fire Risk Use of NiMH batteries, Use
of own batteries, improper
charging of batteries, short
circuit

Always use the provided
power pcb, never use your
own batteries. Always ask
a lab technician to replace
depleted batteries. Provide
short circuit protection of
battery terminals. Report
damaged batteries to lab
technician.

5 2 10

Trips and Falls Spillage of liquids Trail-
ing Cables Inappropriate
footwear Poor storage of
personal items

Wear appropriate clothing,
leave bags and loose items
in locker. No drinks should
be brought to the lab.

2 1 2

Manual Handling Use of hand tools, lifting
equipment

Wear appropriate footwear
in the laboratory. Appropri-
ately handle items or ask for
assistance for heavy items.
Ask for assistance if unsure
on how to use a piece of
equipment.

2 1 1

Electric Shock Exposure to mains, expo-
sure to short circuit from
power supply

Always set an appropri-
ate voltage on power sup-
ply while powered off, in-
clude short circuit protec-
tion, never work directly
with the mains

4 1 4

Soldering Exposure to fumes Use the provided fume
hoods when soldering,
remain at a safe distance
from soldering tip

1 1 1

59

Impact Explanation
5 Catastrophic Damage - Risk to Life
4 Major Damage - Risk of Serious Injury
3 Moderate Damage - Risk of Injury
2 Minor Damage - Risk of Small Injury
1 Very Minor Damage - Low Risk

Probability Explanation
5 Will Happen
4 Very Likely to Happen
3 Moderately Likely to Happen
2 Unlikely
1 Rare

Combined Score Action Required
>=15 Project may not go ahead unless additional safety precautions are undertaken.
5-10 Project may go ahead, review current precautions
<5 No Action Needed

60

References
[1] “A Comprehensive and Comparative Study of Maze-Solving Tech-

niques by Implementing Graph Theory,” 2010. [Online]. Avail-
able: https://www.researchgate.net/publication/224202469_A_Comprehensive_and_Comparative_
Study_of_Maze-Solving_Techniques_by_Implementing_Graph_Theory

[2] T. Instruments, “Difference Amplifier (Subtractor) Circuit,” 2023. [Online]. Available: https:
//www.ti.com/lit/an/sboa274a/sboa274a.pdf?ts=1716303606938

[3] O. Batteries, “Product Specification: SubC 2000mAh 1.2V.” [Online]. Available: https:
//www.farnell.com/datasheets/3684490.pdf

[4] K. Ltd, “HC-SR04 Datasheet.” [Online]. Available: https://docs.rs-online.com/8bc5/
A700000007388293.pdf

[5] M. Online, “Micromouse Competition Introduction.” [Online]. Available: https://micromouseonline.
com/micromouse-book/introduction/

[6] V. Derek Muller, “The Fastest Maze-Solving Competition On Earth,” 2023. [Online]. Available:
https://www.youtube.com/watch?v=ZMQbHMgK2rw&t=474s&ab_channel=Veritasium

[7] S. Mishra and P. Bande, “Maze solving algorithms for micro mouse,” in 2008 IEEE International Con-
ference on Signal Image Technology and Internet Based Systems, 2008.

[8] T. Instruments, “LMC648x CMOS Rail-to-Rail Input and Output Operational Amplifiers.” [Online].
Available: https://www.ti.com/lit/ds/symlink/lmc6484.pdf?ts=1718448009999&ref_url=https%
253A%252F%252Fwww.ti.com%252Fproduct%252FLMC6484%252Fpart-details%252FLMC6484AIN%
252FNOPB

[9] “Invensense MPU60XX DMP Documentation,” 2012. [Online]. Available: https://invensense.tdk.com/
products/motion-tracking/6-axis/mpu-6050/

[10] Zephyr Project, “Symmetric Multiprocessing in Zephyr Kernel.” [Online]. Available: https:
//docs.zephyrproject.org/latest/kernel/services/smp/smp.html

[11] ——, “Message Queues in Zephyr Kernel.” [Online]. Available: https://docs.zephyrproject.org/latest/
kernel/services/data_passing/message_queues.html

61

https://www.researchgate.net/publication/224202469_A_Comprehensive_and_Comparative_Study_of_Maze-Solving_Techniques_by_Implementing_Graph_Theory
https://www.researchgate.net/publication/224202469_A_Comprehensive_and_Comparative_Study_of_Maze-Solving_Techniques_by_Implementing_Graph_Theory
https://www.ti.com/lit/an/sboa274a/sboa274a.pdf?ts=1716303606938
https://www.ti.com/lit/an/sboa274a/sboa274a.pdf?ts=1716303606938
https://www.farnell.com/datasheets/3684490.pdf
https://www.farnell.com/datasheets/3684490.pdf
https://docs.rs-online.com/8bc5/A700000007388293.pdf
https://docs.rs-online.com/8bc5/A700000007388293.pdf
https://micromouseonline.com/micromouse-book/introduction/
https://micromouseonline.com/micromouse-book/introduction/
https://www.youtube.com/watch?v=ZMQbHMgK2rw&t=474s&ab_channel=Veritasium
https://www.ti.com/lit/ds/symlink/lmc6484.pdf?ts=1718448009999&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FLMC6484%252Fpart-details%252FLMC6484AIN%252FNOPB
https://www.ti.com/lit/ds/symlink/lmc6484.pdf?ts=1718448009999&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FLMC6484%252Fpart-details%252FLMC6484AIN%252FNOPB
https://www.ti.com/lit/ds/symlink/lmc6484.pdf?ts=1718448009999&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FLMC6484%252Fpart-details%252FLMC6484AIN%252FNOPB
https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/
https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/
https://docs.zephyrproject.org/latest/kernel/services/smp/smp.html
https://docs.zephyrproject.org/latest/kernel/services/smp/smp.html
https://docs.zephyrproject.org/latest/kernel/services/data_passing/message_queues.html
https://docs.zephyrproject.org/latest/kernel/services/data_passing/message_queues.html

	Introduction
	Problem Identification
	Purpose
	Role Distribution

	Maze Solving
	Maze Solving Theory & Possible Algorithms
	1st Algorithm: Depth-First Search
	2nd Algorithm: Breadth-First Search
	4th Algorithm: Flood Fill

	Coding Implementation
	Prioritising Shortest L-Shaped Path

	Backtracking
	Data Structures

	Physical Implementation

	Control
	Physical Modelling
	Translational Equations of Motion
	Angle Dynamics
	Velocity Dynamics
	Position Dynamics

	Translational Motion Controller Designs: Loop Shaping
	Angle Controller
	Velocity Controller
	Position Controller

	Yaw Equations of Motion
	Yaw Controller Design
	1st Iteration: Modifying the motor controller via acceleration
	2nd Iteration: Modifying the stepper drivers

	Experimental Controller Design
	1st Iteration: Changing Motor Target Angular Velocity
	2nd Iteration: Changing Motor Angular Acceleration

	Controller Performance: Simulations VS Experiment
	Angle Controller
	Velocity Controller
	Position Controller
	Yaw Controller

	Conclusion

	Sensing and Monitoring
	Power Monitoring
	Hardware Interface
	Software Interface
	Conclusion

	Sensing
	Sensor Choice
	Physical Implementation of Sensing
	Maze Error Handling via Sensing
	Inertial Measurement

	Software
	Overview
	Overall implementation

	Firmware
	Robot Movement
	Stepper Driver
	Ultrasonic Sensor Implementation
	Non-Volatile storage
	Communication with the Raspberry Pi (Server)
	Evaluation

	Server
	Overview
	Implementation

	Client
	Overview
	Implementation
	Architecture overview
	UI

	 Conclusion
	Appendix
	Figures
	Bill of Materials
	FMEA Analysis
	Risk Assessment

