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Asteroids is an Atari game from the 1970s, where multiple 
players fly around a zero-g environment and attempt to 
shoot down as many asteroids as possible before getting hit 
too many times and running out of lives. This project is a 
modern take on take on this, extending the game to a 
multiplayer environment where players compete to see who 
can shoot down the most asteroids, adding the twist that 
player can also shoot each other for a healthy score boost. 
In the spirit of many popular modern games, the game 
features a complete lobby system with account and match 
histories managed by an SQLite database. As a homage to 
arcade controllers, an FPGA-based controller was 
developed, featuring accelerometer and button inputs and a 
display for telling the player their score. 

Architecture summary: 

 

Our system is comprised of 3 components. The client is a minimal program running on the user’s 
computer to interface with the cloud hosted server and the FPGA based controller. The server handles 
most of the system’s logic, being responsible for executing the game code, spinning up new game 
instances and providing a user / lobby system for tracking . 

FPGA 



The FPGA provides three inputs to the client – attitude angle to control the player’s rate of rotation in the 
game, and two buttons for controlling the thrusters and guns of the spaceship. While handling button 
presses is simple, we only want to measure the attitude of the FPGA whereas the inbuilt accelerometer 
will also measure linear acceleration -we therefore need to use a combination of an accelerometer and 
gyroscope to isolate the attitude.  We therefore decided to use an external module that combines both 
an accelerometer and gyroscope, utilizing custom RTL designs to take advantage of the FPGA’s fast 
processing potential to implement a Kalman filter. 

Error! Reference source not found. shows the stages of our 
filtering design, in which we include an “Update Covariance” 
stage - this makes the filter better than a standard 
complementary blend of Acceleration and Gyro readings as 
the potential error of each sensor is dynamically calculated 
by refreshing the Covariance error every iteration based on 
information from the other. 

The Quartus project configures the FPGA with multiple modules to speed up processing from what would 
otherwise be relatively slow running on the NIOS II CPU. To measure the magnitude of performance 
gained, both hardware coprocessing and pure CPU execution have been compared. 

Although the entire filter process would ideally be implemented entirely in 
hardware, each FP multiplier uses around 500 LUTs (as shown in Figure 2) whereas 
the FPGA on the DE-10 Lite only contains 5.1k LUTs.  Fixed point systems are also 
not an option as the inevitable impossible balance between low error and clipping 
cannot be addressed. 

 

The primary parts that required acceleration were the trigonometry calculation 
and the many floating point multiply accumulate operations. Using an I2C master in HW instead of a 
software interrupt based one allows me to use the 400KHz mode of the MPU6050 module. The table 
below shows the speedeup in time.  

Calculation NIOS II (ns) HW (ns) Speedup (ms) 
Atan2 3259 0-1 3.3 
I2C Data fetch 1920 1435 0.5 
Covariance Mat Mul 2600 13 2.6 
Iteration Preamble 1359 N/A N/A 

The sampling rate has increased from 100Hz to 330Hz. 
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Figure 2 



The Kalman filter can be tuned with the goal of rejecting physical acceleration from the attitude 
measurement. To do this, the attitude was visualized using MATLAB and the covariance parameters were 

adjusted by hand until it was accurate enough. 

The FPGA interacts with the physical components of the board using the PIO 
(Parallel IO) module in system designer, and provides the 3 comma-separated 
values to the client (current angle, and two buttons) over the UART interface. 

Client 

The client runs on the device of the player and serves as the interface between the FPGA and the server, 
and also displays the game for the player. The client is comprised of the following python threads: 

1. The main game thread renders the game to the personal computer’s display. The renderer uses 
the OpenGL wrapper Raylib for high performance rendering. It takes the positions, rotations and 
other key values (EG lives) of the game’s entities provided by the server and renders them on the 
screen. The Procedurally generated asteroids and stars, as well as a “flame” appearing behind 
accelerating players is a unique take on the original Atari game’s aesthetic. We also added a 
debugging mode which displays additional diagnostic information such as the FPS, poll rate, 
network RTT, and collision hitboxes. 

2. FPGA communication thread, to read values from values from the FPGA. 

The FPGA sends a comma-separated string of three values – the current angle (float in range –100 
to 100), and two button values (both boolean, sent as either 0 or 1). These values are then stored 
to the current client state, which will need to be used by the server thread to send to the server.  

3. The server interface thread communicates with the server by sending a request to the server 20 
times per second. both request and response data are stored in state shared by all client threads. 
The net code thread simply serialized this data with Capnproto (https://capnproto.org/), and 
sends it to the server over a TCP socket to the server. 

4. A console thread provides a basic CLI for the player to interface with the server’s matchmaking 
system (EG: login, list games, join games). This thread simply reads commands from stdin to the 
client state and prints out the server’s response (from the client state).  

Server 

The server is responsible for managing players and hosting games. This includes managing user data, 
spinning up game sessions, and running the underlying game logic. The server is a threaded system 

written in Rust                    for performance and thread safety. 

At the core, is the global game state, which contains data about all game lobbies. This is accessible by all 
threads behind synchronization primitives for thread safety. 

• TCP Server thread 

The server listens continuously for new connections, spinning off a new thread for each client, which 
solely services a single client. 

https://capnproto.org/


The thread handles communication with the client, whereby the client will send a request which the 
server thread will deserialize, update the relevant game state, and then respond with the serialized game 
state. 

The request may also contain a list of commands for the lobby interface system. The user account and 
match history part of this system are built on top of a highly normalized SQLite database providing data 
permanence between server restarts. Because all clients are disconnected and games cancelled when 
the server restarts, the lobby system (which handles creating and joining games) is built on purely volatile 
states spanning the user’s TCP thread and the server’s global state (a vector of games). 

• Game tick thread 

The game tick thread periodically iterates through each game, running their tick function. This handles 
the underlying logic of the game, as well as saving the match results and stopping the game once all 
players have run out of lives. 

Notable features of the game code include the Newtonian spaceship physics designed to closely 
resembles the original game, the tick-rate-independent based physics (allowing identical behaviors at 
varying tick rates), and the low complexity distance-checking based approach to collision detection. 

Performance metrics and optimizations:  

• Latency 

Low latency is important for a pleasant gaming experience 

For our game all processing is done on the server, as we decided this was necessary to correctly 
determine game state, and this meant we didn't have to perform client-side prediction and server 
reconciliation. This does, however, add a small delay.  

There is also a delay from reading the data from the FPGA. Since we have a thread constantly 
reading from the stream and instantly updating the values this means the delay is negligible. 
However, the client only sends data to the server every 50ms, so there is an expected delay of 
25ms, plus the delay to the server over the network for simulation, as well as delay back from the 
server to the client. If the server is running on AWS, we tested this to have a ping of around 15ms, 
so there is therefore an average delay of 55ms delay from a player pressing the shoot button to 
seeing their player shoot. From our testing, this has not affected the playing experience of the 
game. 

• Client Rendering performance 

The client renderer is very performant, as Raylib is only a thin wrapper around OpenGL, and the 
coordinate mappings are calculated by us. With VSync disabled, we have been able to exceed 
3700fps on a desktop with a mid-range GPU, so this is clearly not an issue. Increasing the player 
count will mean the client must render more players, but this has minimal overhead. 

• Server Player handling count 



The server must be able to handle many players and simultaneous games efficiently and with low 
latency. 

We also decided to benchmark how many players the server could handle. We wrote a 
benchmarking program (benchmarking/benchmark.py), that opened 16384 connections to the 
server, and registered an account for each of them. CPU usage hovers around 9% and uses 
168.4MiB memory (with each client continuing to poll the server) 

The benchmark script then created 2048 lobbies, where 8 players joined each, and then started 
the game. The server program then uses around 25% CPU usage, and 232MiB memory. This 
shows that the game simulation logic (which is set to run at a tick rate of 60Hz has minimal 
computational requirements). 

Increasing the player count further runs into Linux kernel restrictions, as each connection 
requires an open file (for the socket) and thread, both of which are limited. 

 


